Basic considerations on the use of particles and polymers in molecular imaging

in “Chemistry in Contrast Media”

Hisataka Kobayashi, MD, PhD,
Molecular Imaging Program
NCI/NIH

WMIC2012 Educational lecture 9/5/2011

Learning objects

- Non-targeted particles and polymers
- “Really” basic considerations
- Inspiration from nature’s own particles
- Clearance pathways in relationship to size and surface properties (e.g., PEGylation)
- Size aspects in relation to dimensions of biological entities
- Surface-to-volume
- Interactions with blood components
- Immunogenic effects

Case by case for each polymer or nano-particle!!

Contents

- Basic consideration on nano-materials
 - “slow but powerful”, unique properties…
 - Bio-degradable?
- Pharmacokinetics (PK) of nano-sized agents
 - Size
 - Beyond size
 • charge, hydrophilicity, surface-coating, flexibility
 • Nano-toxicology
- Interaction with protein
- Immunogenicity

Small vs Large

Small molecules
Polymer and nano-materials

Tracks: Slow but powerful
Bikes: Fast but less powerful
Can be faster, safer, or more powerful???

Unique signaling

Nanomedicine for imaging

Imaging probe design

Vehicle/Platform
Targeting ligand
Target molecule
Nano-toxicology

1. Delivery/kinetics
2. Multi-valency
 polymers/nano-particles
Organs specific imaging
Nano-medicine

Special signaling
Multi-color

Quantum dots can emit multiple color of light with single excitation
Upconverting Nano-crystals (UCNC)
can emit shorter wavelength of light than excitation light.
can realize imaging without background auto-fluorescence.

Biodegradable?
Non-biodegradable
• Generally a covalently-bonded single molecule without enzyme for catabolism.
• PK: an injected molecule simply behaves depending on its physical and chemical characteristics.

Biodegradable
• A molecule with cleavable bonds, or a self-assembled crystal or particle consisting of multiple molecules or ions
• PK: complicated! because all intermediate and final catabolites can behave differently in the body.

To explain the basic strategy, I only discuss the behavior of non-degradable molecules/reagents.

Contents
• Basic consideration on nano-materials
 – “slow but powerful”, unique properties…
 – Bio-degradable?
• Pharmacokinetics (PK) of nano-sized agents
 – Size
 – Beyond size
 • charge, hydrophilicity, surface-coating, flexibility
 – Nano-toxicology
• Interaction with protein
• Immunogenicity

We learned PK of nano-sized agents a lot from radio-labeled antibody studies

Pharmacokinetics of nano-sized agents
• Size
• Beyond size
 – Charge
 – Hydrophilicity
 – Hard/soft – shape/flexibility
 – Binding or association with serum proteins
Dendrimer-based MRI contrast agents

We used this series of molecules as cores to synthesize the Gd-based nano-size contrast agents with various sizes but identical chemical properties.

Dynamic MRI

Liver + kidney excretion

Kidney excretion

Increased blood intensity

Liver

Biodistribution differences of nano-sized molecules

The body can well recognize the differences of nano-sized molecules.
Renal selection of nano-sized molecules

Size of molecules; major league

- small: 3 nm (G2)
- 6 nm (G4)
- 8 nm (G6A)
- 13 nm (G8)

Blood pool

- Glomerular filtration

Urine

Renal selection of nano-sized molecules

PAMAM-G7 (10 nm)

PAMAM-G9 (13 nm)

PAMAM-G3 (5 nm)

Gd-DTPA (<1 nm)

There is a cut-off nano-size which can regulate the renal excretion.

Nano-sized particles’ behavior in kidney

Renal selection of nano-sized molecules

Renal excretion

Safer in toxicity

Longer circulation

High input function (EPR effect)

Size of nano-materials for imaging

Pharmacokinetics in nano-sized P&P

In terms of PK of nano-molecules, three major players are...

1. Vascular wall is a player for molecules with <3 nm in diameter by the almost free extravasation of molecules with the glomerulus.
 - Tumor vessels are leakier than normal capillary
2. Kidney is a player for molecules with <6 nm in diameter by the filtration of molecules with the glomerulus.
 - Rapid clearance. Safer profile for toxicology
3. Liver is a player for molecules with >20 nm in diameter by the recognition of molecules with the RES.

Leakage from the vessels

capillary

large vessels

- <3 nm in diameter
- >3 nm in diameter

Tumor vessels are leakier than normal capillary

(Choi, HS., Nature Biotech 2006)

(Longmire M, Kobayashi H., Nanomedicine 2008)
Beyond size

Charge

PK change of Fab (~6nm) by charge

PamAM-G4

PPI/DAB-G4

1 min after injection

Bright liver with PPI

9 min post-injection

PK change of Fab (~6nm) by charge

Beyond size

Hydrophilicity
(Stealthy from RES)

Different interior PAMAM to PPI change PK

Beyond size

Hard/soft – Shape/Flexibility
Contents

- Basic consideration on nano-materials
 - "slow but powerful", unique properties...
 - Bio-degradable?
- Pharmacokinetics (PK) of nano-sized agents
 - Size
 - Beyond size
 - charge, hydrophilicity, surface-coating, flexibility
 - Nano-toxicology
- Interaction with protein
- Immunogenicity

PK of nano-materials beyond size

- **(hard/soft interior)**
 - Lysine core/interior: G3
 - 14.5 nm/~50 kD
 - 127 terminals
 - Ammonia core PAMAM-G6
 - 10.5 nm/~150 kD
 - 192 terminals
 - EDA core PAMAM-G6
 - 15 nm/~200 kD
 - 256 terminals

- **(shape)**
 - PAMAM-G4 PEG2k x60
 - 18 nm~140 kD
 - 64 terminals
 - PAMAM-G4 PEG2k x2
 - 18 nm~100 kD
 - 62 terminals

Binding or association to protein

- **Strong binding**
 - Behave like a single larger molecule
 - Longer clearance from the circulation

- **Weak association**
 - Partially behave like a single larger molecule in short term
 - Clearance does not change much

Immunogenicity

- Immunogenicity of nano-sized agents is Yes or No answer, yet is really case-by-case and hard to be predicted.
- Lowering immunogenicity: surface coating
 - Well hydrophilic (i.e. PEG)
 - Neutral or a little anionic surface charge

- Less interaction with immune cells
- Less opsonization
Hydrophilic (PEG) surface coating

Plasma half life = 12 h
Plasma half life = 0.3 h

Hydrophilic coating induces stealthy of nano-sized molecules/ particles from RES

(Kojima C, Kobayashi H., Int J Pharm. 2010 and many others)

Summary

• Nano-materials with relatively small size can be excreted through kidneys into urine, resulted in preferable profile for the nano-toxicology.
• The in vivo delivery and BioD of nanomaterials can be controlled by simply changing the physical and chemical characteristics (size, shape, charge, flexibility, hydrophilicity, surface coating, etc.).
• Long circulation due to stealthy from RES is important for tumor delivery based on EPR effects
• Signal obtained from nano-materials can be unique for depicting new organs or targets, which currently cannot be visualized.

Lymph node imaging

Mechanism

Post USPIO Histology

Mets
Mets+

Dynamic MR lymphangiography of a pig

(Gd-dendrimer agent: 1 μmolGd/kg)

Optical lymphatic flow imaging using ICG

ICG is an FDA-approved fluorophore. ICG can bind to serum protein and behave like an macromolecule in vivo.

(Trojan, Frangioni, Ann Surg Oncol 2009)

Take home messages

1. Nano-material (polymers or particles) can have nearly infinite possibilities for developing new imaging agents.
2. Precise control of size, shape, charge, hydrophilicity, and flexibility allows us to optimize the target-delivery and pharmacokinetics of imaging agents in the body that can improve imaging and lower nano-toxicity.
3. Unique signaling characteristics allows us to perform a variety of multiplexed imaging, which can extract more comprehensive information from the living body than conventional imaging.