Basic Principles of Tracer Kinetic Modelling

Adriaan A. Lammertsma

Department of Nuclear Medicine & PET Research, VU University Medical Center, Amsterdam, The Netherlands
Email: aa.lammertsma@vumc.nl

The Spectrum of Medical Imaging

Structure
- X-ray/CT/MRI

Physiology
- US, SPECT, PET, MRI/S

Metabolism
- PET, MRS

Drug distribution
- PET

Molecular pathways
- PET, SPECT

Molecular targets

PET: Quantitative Picomolar Sensitivity

Jones, 1996

PET Diagnosis

Inject

Wait

Scan

Increased uptake:
- Increased binding
- Increased flow and/or extraction
- Increased delivery

[11C]PIB Uptake

Control

AD

- Qualitative PET sufficient for diagnosis (sensitivity/specificity)
- Quantitative PET needed for monitoring disease progression and response to therapy

Data Tolboom, Ossenkoppele, et al.

[11C]R116301: NK1 Receptor Ligand

base-line

post-aprepitant

Summed image

BP\(_{AD}\) = \(k_3 / k_4\)

[11C]R116301: NK1 Receptor Ligand

Principles of Modelling

"I think you should be more explicit here in step two."
Tracer Model

Measurement

Radioactivity

Quantitative Evaluation

Physiological Parameter

Principles of Modelling

Tracer Kinetic Modelling

Tracer Model: Mathematical description of the fate of the tracer in the human body, in particular in the organ under study

Purpose: To quantify functional entities given the distribution of radioactivity

Method: Divide possible distribution of tracer in a limited number of discrete compartments

Compartment Models

- Blood volume tracer
- Blood flow tracer
- Glucose metabolism
- Receptor ligand

Nomenclature

Consensus nomenclature for in vivo imaging of reversibly binding radioligands

Blood Flow
H₂¹⁵O as Perfusion Tracer

Advantages
- Freely diffusible
- Metabolically inert
- Simple kinetics
- Short half life (2 min) → Repeat measurements

Disadvantages
- Short half life → On-site cyclotron

Single Tissue Compartment Model

\[
\frac{dc_T}{dt} = K_1 C_A - k_2 C_T
\]

\[
C_T(t) = C_A(t) \cdot e^{-(F/V_T)t}
\]

History

- Delay and dispersion

H₂¹⁵O Time-Activity Curves

- Non-linear regression

Volume of Distribution

Equilibrium - partition coefficient

\[
\frac{dC_f}{dt} = 0; \frac{dC_p}{dt} = 0
\]

\[
V_T = C_f/C_p
\]

Non-equilibrium

\[
V_T = [C_f]/C_p
\]

Single tissue compartment model

\[
\frac{dC_f}{dt} = K_1 C_p(t) - k_2 C_f(t)
\]

At equilibrium:

\[
k_1 C_p(t) - k_2 C_f(t) = 0 \rightarrow V_T = C_f/C_p = k_1/k_2
\]

Parametric Images

- CBF
- VT
Receptor Studies

Three Tissue Compartment Model

Two Tissue Compartment Model

Receptor Ligand Model

Quantitative PET Study

Injection of positron emitting tracer

Measurement of time-activity curves

Input: plasma (C_P) + whole blood (C_{WB})

Response:

- Ideal: tissue (C_T)
- Actual: PET (C_{PET})

Solution

$C_{PET} = f(C_P, C_{WB}, \text{parameters})$
PET Receptor Studies

PET measurement

\[C_{\text{PET}}(t) = (1-V_B)C_T(t) + V_B C_{WB}(t) \]

\[C_T(t) = C_{\text{ND}}(t) + C_S(t) \]

Differential equations

\[\frac{dC_{\text{ND}}(t)}{dt} = K_1 C_{P}(t) - k_2 C_{\text{ND}}(t) - k_3 C_{\text{ND}}(t) + k_4 C_S(t) \]

\[\frac{dC_S(t)}{dt} = k_3 C_{\text{ND}}(t) - k_4 C_S(t) \]

Relationship with pharmacological parameters

\[k_3 = f_{\text{ND}} \cdot k_{\text{on}} \cdot (B_{\text{avail}} - C_S(t)/SA) \]

\[k_4 = k_{\text{off}} \]

Note: \(B_{\text{avail}} = B_{\text{max}} - B_{\text{occ}} \) (e.g., endogenous ligand)

Tracer alone

\[k_3 = f_{\text{ND}} \cdot k_{\text{on}} \cdot B_{\text{ avail}} \]

\[k_4 = k_{\text{off}} \]

\[K_D = k_{\text{off}}/k_{\text{on}} \]

\[B_{\text{ND}} = k_3/k_4 = f_{\text{ND}} \cdot B_{\text{avail}}/K_D \]

Receptor Studies

Parameter of interest

- Binding Potential: \(B_{\text{ND}} = k_3/k_4 \)

Tracer alone

- \(B_{\text{ND}} = f_{\text{ND}} \cdot B_{\text{ avail}} / K_D \)

Multiple studies in same subject

- Separate assessment \(B_{\text{ avail}} \) and \(K_D \)

Volume of Distribution

Single tissue compartment model

At equilibrium: \(V_T = C_T/C_P = K_1/k_2 \)

Two tissue compartment model

At equilibrium: \(dC_{\text{ND}}(t)/dt = dC_S(t)/dt = 0 \)

\[dC_S/dt = k_3 C_{\text{ND}}(t) - k_4 C_S(t) \]

\[dC_{\text{ND}}/dt = (k_3 C_P - C_S)/C_P = (k_3/k_4) \cdot C_{\text{ND}} \]

\[V_T = K_1/k_2 \cdot (1+k_3/k_4) \]

\[\text{Plasma input model} \]

Direct

- \(B_{\text{ND}} = k_3/k_4 \)

But: often unstable

Indirect

- Target tissue: \(V_T = K_1/k_2 \cdot (1+k_3/k_4) \)

- Reference tissue: \(V_{T'} = K_1'/k_2' = K_1/k_2 \)

- \(B_{\text{ND}} = (V_T-V_{T'})/V_{T'} \)

But: reference tissue required

Reference tissue model
Binding Potential Definitions

Relative to non-displaceable concentration:

$$BP_{ND} = f_{ND}B_{avail}/K_D = (V_T - V_{ND})/V_{ND} = k_3/k_4$$

Relative to total plasma concentration:

$$BP_P = f_PB_{avail}/K_D = V_T - V_{ND} = K_1k_3/k_2k_4$$

Relative to free plasma concentration:

$$BP_F = B_{avail}/K_D = (V_T - V_{ND})/f_P = K_1k_3/k_2k_4$$

Overview Kinetic Analysis Process

Overview kinetic analysis

Dynamic PET scan

Kinetic model

Input function

Fitting routine

Kinetic parameters

Limitations

Limitations Tracer Procedures

Theoretical
- Model simplifications
- Complexity physiological process

Practical
- Performance scanner
- Imperfect implementation
- Complexity procedure

Limitations

Theoretical
- Model simplifications
- Complexity physiological process

Practical
- Performance scanner
- Imperfect implementation
- Complexity procedure

Model Simplifications

Measurement of blood volume using C^{15}O

Blood sample:
- 100% blood, concentration C_A

PET scanner:
- "tissue" concentration C_T

Blood concentration is constant:
- $tissue\ BV = C_T / C_A$
Model Simplifications

C¹⁸O is a red cell marker
Capillary haematocrit < large vessel hematocrit
Whole blood concentration is not constant
Correction for haematocrit difference required
 Separate haematocrit measurement
 Alternative: fixed haematocrit ratio
 • Assumed haematocrit ratio to be checked in pathology

Pathophysiology

A tracer procedure should be reassessed for each new pathophysiological condition

Possible breakdown of the model should be considered in interpreting clinical data

Limitations Tracer Procedures

Theoretical
 Model simplifications
 Complexity physiological process

Practical
 Performance scanner
 Imperfect implementation
 Complexity procedure

Complexity Physiological Process

Questions