Talk Overview

1. Introduction to MRI
2. NMR Physics
3. System Components
4. Imaging Protocols – some basics

€ 1.5 - 2 million, one of the most expensive machine in hospital

Timeline of MR Imaging

1979
University of Aberdeen

0.04 T

Transverse liver scan

- Paul suggests that nuclear particles may have angular momentum ("spin")
- Rabi measures magnetic moment of nucleus. Caine "magnetic resonance"
- Bloch demonstrates that nuclear precession can be measured in detector coils
- Purcell shows that matter absorbs energy at a resonant frequency
- Lauterbur & Mansfield - expand NMR to MRI
- First whole body image - Aberdeen

= Nobel Prize
Advantages:
- Excellent / flexible contrast
- Non-invasive
- No ionizing radiation
- Arbitrary scan plane

Challenges:
- Faster imaging
- New contrast mechanisms
- New contrast agents
 - e.g. paramagnetic nanoparticles for molecular imaging applications

Talk Overview

1. Introduction to MRI
2. NMR Physics
3. System Components
4. Imaging Protocols – some basics

2. NMR Physics

MRI – more accurately termed NMRI (nuclear magnetic resonance imaging)
- "Spin" is a property of some elementary particles
 - e.g., electron has spin $= \frac{1}{2}$ → Electron Spin Resonance (ESR)
- Some nuclei also have property of "spin" can have spin $= \frac{1}{2}, 1, 1\frac{1}{2}, 2, \ldots$
- Examples: 1H, 13C, 14F, 23Na, and 31P, plus many others......

• Most prevalent atom in body is Hydrogen, 1H :
 - nucleus = 1 proton
 - positively charged
 - spin $= \frac{1}{2}$ → hence 1H nuclei act like tiny magnets

• MRI – mainly looking at 1H in water molecules (H$_2$O)
 - different environments - intra-cellular, extra-cellular, intravascular,
 - also 1H in fat molecules (…CH$_2$)ₙ + …

• Bodies are about 70-80% water, therefore lots of hydrogen nuclei
 → we measure a big signal, hence produce nice images
The applied B_0 field causes splitting of energy levels
\Rightarrow we have "polarised" the spin population in the sample

The inherent sensitivity of an MRI experiment is quite small (5 ppm at 1.5 T)
\Rightarrow only the excess population contributes to the measured signal
\Rightarrow for each gram of tissue, of the approx 10^{22} protons, we have an excess of approx 10^{17} protons, so enough to contribute a signal!

The excess of spins in the lower energy state produce a macroscopic "Net Magnetisation, M_0" within the sample, parallel to B_0

This Net Magnetisation, M_0, can be manipulated by applying an oscillating magnetic field at a very specific frequency

In reality, the spins are not exactly aligned with B_0, rather they precess around the direction of B_0 at a certain angle:

The frequency of precession is proportional to the strength of the applied magnetic field, B_0
\Rightarrow is given by the Larmor Equation: $\omega = \gamma B_0$

To excite a "transition" from the lower energy state to the higher energy state, we must supply energy to the system.

Energy Gap $\Delta E = \gamma \hbar B_0$

Energy of a photon $\hbar \omega = \hbar \gamma B_0$

therefore $\omega = \gamma B_0$

or $\omega = \gamma B_0$ i.e. the same frequency that the spins precess at!

......the resonance phenomenon
Light photons
\~ \(600,000\ \text{MHz}\)

X-ray photons
\~ \(3,000,000,000\ \text{MHz}\)
- cause damage when passing through tissue

At 3 T, the frequency needed to excite the transition is 128 MHz
\(= \gamma B_0\)
- we call this the “Radio Frequency” range

At 7 T, frequency = 300 MHz

The spin population “absorbs” energy from this applied EM field
- only consider the magnetic component \(\rightarrow\) the \(B_1\) field
- we send in a short “pulse” of RF energy
- immediately after absorbing the energy, we say that the sample is “excited”

The Net Magnetisation vector \(M_y\) is tipped away from alignment with \(B_0\), and begins to spiral at the Larmor frequency, eventually reaching the transverse \((x, y)\) plane if enough RF energy is supplied (a “90º flip” \(\rightarrow M_y\))

At 3 T, the frequency needed to excite the transition is 128 MHz
\(= \gamma B_0\)
- we call this the “Radio Frequency” range

At 7 T, frequency = 300 MHz

The spin population “absorbs” energy from this applied EM field
- only consider the magnetic component \(\rightarrow\) the \(B_1\) field
- we send in a short “pulse” of RF energy
- immediately after absorbing the energy, we say that the sample is “excited”

The Net Magnetisation vector \(M_y\) is tipped away from alignment with \(B_0\), and begins to spiral at the Larmor frequency, eventually reaching the transverse \((x, y)\) plane if enough RF energy is supplied (a “90º flip” \(\rightarrow M_y\))

Signal Detection

The signal decays due to relaxation processes
- basically, the coherence of the many spins (adding to give \(M_y\)) decreases
- \(M_y\) drops

\[M_y(t) = e^{-t/T_2}\]

\(T_2\) is very sensitive to interactions occurring on a molecular level, and hence to the molecular environment of the \(^1\)H nuclei
- \(T_2\) varies widely between different tissue types and indeed among different pathologies
- can be used to introduce contrast into images (“\(T_2\)-weighted” images)
After exciting the spin system, it returns to its equilibrium state
- this process is called “spin – lattice relaxation”
- M_0 recovers, also following an exponential curve
- time constant called “T_1” → hence “T_1 relaxation”
- T_1 also very sensitive to molecular environment → “T_1 weighed” images

Talk Overview

1. Introduction to MRI
2. NMR Physics
3. System Components
4. Imaging Protocols – some basics
3. System Components

RF Coils: Surface Detector Coils

- Also called “Receiver coils”
- Ultimate image quality – determined by the Signal to Noise ratio (“SNR”)
- They are designed to maximise the measured signal while minimising noise
- Noise comes from electrical sources (copper wires) but also Brownian motion in the patients themselves
- Max SNR (or “Sensitivity”) → when coil is “filled”
 i.e. must match the coil to the anatomy of interest

4. Imaging Protocols

Imaging “Pulse Sequences”

These are timing diagrams describing when the RF pulses & magnetic field gradients are applied and when the MR signal is measured.

…. can be fairly complicated beasts!

Better spatial resolution → need more repetitions, hence longer acquisition time
4. Imaging Protocols

#1

#2

#3

#4

Raw data or "k-space"

Digital sampled

Fourier Transform

Image acquisition times

#1

#2

~ 10's millisecc

~ seconds

TR - time to repeat

The long TR times are due to the long \(T_1 \) relaxation times of tissue

\[\rightarrow \]

we need to wait for \(M_0 \) to recover before "exciting" the spin system again with another 90º RF pulse

\[\rightarrow \]

acquisition times of ~ minutes are common

\[\rightarrow \]

possible to image in < 1 second, but trade-off image quality for speed

4. Imaging Protocols

\[T_1 \]-weighted images

By varying TR, we can introduce varying amounts of \(T_1 \)-weighting into images

Short TR

Long TR

Two contributions to \(T_2^* \) signal decay:

1. true \(T_2 \) molecular processes

2. non-uniformities in \(B_0 \)

Hence, we form an echo of the signal some time (~ ms) after the excitation

\[\rightarrow \]

this time is called the "time-to-echo", TE

\[\rightarrow \]

varying TE allows us to vary the amount of \(T_2 \) weighting in the images

4. Imaging Protocols

\[T_2 \] versus \(T_2^* \) relaxation

RF

Exitation

Signal

\(T_2 \) envelope

\[\times \]

The signal decreases more quickly than due to \(T_2 \) decay alone...

\[\rightarrow \]

Called \(T_2^* \) decay

4. Imaging Protocols

\[T_2 \]-weighted images

By varying TE, we can introduce varying amounts of \(T_2 \) weighting into images

160 ms

90 ms

130 ms

160 ms
4. Imaging Protocols

- **k-space lines and spatial resolution**
 - High resolution image
 - 4 mins
 - Low resolution image
 - 2 mins

5. Summary

- **Summary**
 - **MRI** — based on magnetic properties of certain nuclei
 - mainly focus on 1H
 - 3 magnetic fields used in MRI
 i. B_0 — very large, static, caused polarisation of spins in sample
 ii. B_1 — RF energy used to resonantly excite the spin system
 iii. Gradients — allow for spatial localisation of signal, i.e. imaging
 - Hardware components for each function
 - Imaging protocols
 - determine how / when things are turned ON and OFF
 - many variations, producing many different image contrasts